Transcriptional coregulation by the cell integrity mitogen-activated protein kinase Slt2 and the cell cycle regulator Swi4.
نویسندگان
چکیده
In Saccharomyces cerevisiae, the heterodimeric transcription factor SBF (for SCB binding factor) is composed of Swi4 and Swi6 and activates gene expression at the G(1)/S-phase transition of the mitotic cell cycle. Cell cycle commitment is associated not only with major alterations in gene expression but also with highly polarized cell growth; the mitogen-activated protein kinase (MAPK) Slt2 is required to maintain cell wall integrity during periods of polarized growth and cell wall stress. We describe experiments aimed at defining the regulatory pathway involving the cell cycle transcription factor SBF and Slt2-MAPK. Gene expression assays and chromatin immunoprecipitation experiments revealed Slt2-dependent recruitment of SBF to the promoters of the G(1) cyclins PCL1 and PCL2 after activation of the Slt2-MAPK pathway. We performed DNA microarray analysis and identified other genes whose expression was reduced in both SLT2 and SWI4 deletion strains. Genes that are sensitive to both Slt2 and Swi4 appear to be uniquely regulated and reveal a role for Swi4, the DNA-binding component of SBF, which is independent of the regulatory subunit Swi6. Some of the Swi4- and Slt2-dependent genes do not require Swi6 for either their expression or for Swi4 localization to their promoters. Consistent with these results, we found a direct interaction between Swi4 and Slt2. Our results establish a new Slt2-dependent mode of Swi4 regulation and suggest roles for Swi4 beyond its prominent role in controlling cell cycle transcription.
منابع مشابه
In the yeast heat shock response, Hsf1-directed induction of Hsp90 facilitates the activation of the Slt2 (Mpk1) mitogen-activated protein kinase required for cell integrity.
Yeast is rendered temperature sensitive with loss of the C-terminal (CT) domain of heat shock transcription factor (Hsf1). This domain loss was found to abrogate heat stimulation of Slt2 (Mpk1), the mitogen-activated protein kinase that directs the reinforced cell integrity gene expression needed for high-temperature growth. In Hsf1 CT domain-deficient cells, Slt2 still undergoes Mkk1/2-directe...
متن کاملYeast Mpk1 Cell Wall Integrity Mitogen-activated Protein Kinase Regulates Nucleocytoplasmic Shuttling of the Swi6 Transcriptional Regulator
The yeast SBF transcription factor is a heterodimer comprised of Swi4 and Swi6 that has a well defined role in cell cycle-specific transcription. SBF serves a second function in the transcriptional response to cell wall stress in which activated Mpk1 mitogen-activated protein kinase of the cell wall integrity signaling pathway forms a complex with Swi4, the DNA binding subunit of SBF, conferrin...
متن کاملFunctional connection between the Clb5 cyclin, the protein kinase C pathway and the Swi4 transcription factor in Saccharomyces cerevisiae.
The rsf12 mutation was isolated in a synthetic lethal screen for genes functionally interacting with Swi4. RSF12 is CLB5. The clb5 swi4 mutant cells arrest at G(2)/M due to the activation of the DNA-damage checkpoint. Defects in DNA integrity was confirmed by the increased rates of chromosome loss and mitotic recombination. Other results suggest the presence of additional defects related to mor...
متن کاملRlm1 mediates positive autoregulatory transcriptional feedback that is essential for Slt2-dependent gene expression.
Activation of the yeast cell wall integrity (CWI) pathway induces an adaptive transcriptional programme that is largely dependent on the transcription factor Rlm1 and the mitogen-activated protein kinase (MAPK) Slt2. Upon cell wall stress, the transcription factor Rlm1 is recruited to the promoters of RLM1 and SLT2, and exerts positive-feedback mechanisms on the expression of both genes. Activa...
متن کاملYeast Mpk1 mitogen-activated protein kinase activates transcription through Swi4/Swi6 by a noncatalytic mechanism that requires upstream signal.
The cell wall integrity mitogen-activated protein kinase (MAPK) cascade of Saccharomyces cerevisiae drives changes in gene expression in response to cell wall stress. We show that the MAPK of this pathway (Mpk1) and its pseudokinase paralog (Mlp1) use a noncatalytic mechanism to activate transcription of the FKS2 gene. Transcriptional activation of FKS2 was dependent on the Swi4/Swi6 (SBF) tran...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular and cellular biology
دوره 21 19 شماره
صفحات -
تاریخ انتشار 2001